Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR.
نویسندگان
چکیده
Oncogenic Ras and p53 loss-of-function mutations are common in many advanced sporadic malignancies and together predict a limited responsiveness to conventional chemotherapy. Notably, studies in cultured cells have indicated that each of these genetic alterations creates a selective sensitivity to ataxia telangiectasia and Rad3-related (ATR) pathway inhibition. Here, we describe a genetic system to conditionally reduce ATR expression to 10% of normal levels in adult mice to compare the impact of this suppression on normal tissues and cancers in vivo. Hypomorphic suppression of ATR minimally affected normal bone marrow and intestinal homeostasis, indicating that this level of ATR expression was sufficient for highly proliferative adult tissues. In contrast, hypomorphic ATR reduction potently inhibited the growth of both p53-deficient fibrosarcomas expressing H-rasG12V and acute myeloid leukemias (AMLs) driven by MLL-ENL and N-rasG12D. Notably, DNA damage increased in a greater-than-additive fashion upon combining ATR suppression with oncogenic stress (H-rasG12V, K-rasG12D, or c-Myc overexpression), indicating that this cooperative genome-destabilizing interaction may contribute to tumor selectivity in vivo. This toxic interaction between ATR suppression and oncogenic stress occurred without regard to p53 status. These studies define a level of ATR pathway inhibition in which the growth of malignancies harboring oncogenic mutations can be suppressed with minimal impact on normal tissue homeostasis, highlighting ATR inhibition as a promising therapeutic strategy.
منابع مشابه
Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner.
Previous studies indicate that oncogenic stress activates the ATR-Chk1 pathway. Here, we show that ATR-Chk1 pathway engagement is essential for limiting genomic instability following oncogenic Ras transformation. ATR pathway inhibition in combination with oncogenic Ras expression synergistically increased genomic instability, as quantified by chromatid breaks, sister chromatid exchanges, and H2...
متن کاملMolecular and Cellular Pathobiology Combining ATR Suppression with Oncogenic Ras Synergistically Increases Genomic Instability, Causing Synthetic Lethality or Tumorigenesis in a Dosage-Dependent Manner
Previous studies indicate that oncogenic stress activates the ATR-Chk1 pathway. Here, we show that ATRChk1 pathway engagement is essential for limiting genomic instability following oncogenic Ras transformation. ATR pathway inhibition in combination with oncogenic Ras expression synergistically increased genomic instability, as quantified by chromatid breaks, sister chromatid exchanges, and H2A...
متن کاملEfficacy of ATR inhibitors as single agents in Ewing sarcoma
Ewing sarcomas (ES) are pediatric bone tumors that arise from a driver translocation, most frequently EWS/FLI1. Current ES treatment involves DNA damaging agents, yet the basis for the sensitivity to these therapies remains unknown. Oncogene-induced replication stress (RS) is a known source of endogenous DNA damage in cancer, which is suppressed by ATR and CHK1 kinases. We here show that ES suf...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملTherapeutic Discovery Inhibition of ATR-Dependent Signaling by Protoapigenone and Its Derivative Sensitizes Cancer Cells to Interstrand Cross-link–Generating Agents In Vitro and In Vivo
DNAdamage caused during cancer treatment can rapidly activate the ataxia telangiectasia-mutated (ATM) andATMandRad3-related (ATR)-dependentphosphorylation ofChk2andChk1kinases,which arehallmarks of theDNAdamage response (DDR). Pharmacologic inhibition ofATR causes a synthetic lethal effect onATMorp53-defective cancers, suggesting that such inhibition is an effectiveway to improve the sensitivit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 122 1 شماره
صفحات -
تاریخ انتشار 2012